

I-SPY with my little eye

your best matched treatment

Laura van 't Veer, PhD University California San Francisco

Inspire2Live 2020

- Co-Founder, part-time employee and stock holder Agendia NV (MammaPrint)
- No off-label use will be discussed

Personalized Healthcare - Precision Oncology

Breast Cancer Therapy – early 2000's

right time. Now.

70 Gene Prognosis Signature - MammaPrint

MammaPrint: '07 FDA cleared IVDMIA for prognosis assessment technology – microarray

MINDACT Trial : Study Objective

- Microarray In Node negative and 1-3 positive node Disease may Avoid ChemoTherapy (MINDACT)
- Designed to provide evidence for the clinical utility of MammaPrint:
 - Use of the 70-gene signature (MammaPrint)
 - In addition to standard clinical-pathological criteria
- Goal: more accurate selection of patients for adjuvant chemotherapy
- "Precision Medicine/Personalized Medicine"

MINDACT Primary Test and End Point

Primary endpoint:

• Distant Metastasis Free Survival (DMFS) at 5 years

Primary test:

- To assess whether patients with <u>clinical high risk</u> features and a <u>genomic Low Risk</u> profile who did not receive CT would have a <u>5-year DMFS</u> of ~95%.
 - A **non-inferiority** boundary of **92%** (lower limit confidence)

MINDACT Trial Primary Test Analysis: Clin-High / MP Low group- No Chemo (100% compliance)

Primary Test Population, C-high / G-low tumors:

- 58% >2cm
- 93% Grade II or III
- 48% LN+ 1-3
- 98% HR+

Primary Endpoint met!

- 5-Year DMFS for the C-high / G-low (MP Low) group with no CT= 94.7% (CI: 92.5 – 96.2%).
- Excludes 92%, positive outcome met.

MINDACT Secondary Test

Secondary endpoint:

Distant Metastasis Free Survival of noCT vs CT

Secondary test:

• To assess significance of survival difference, *added clinical benefit of chemotherapy*, for patients with <u>clinical high risk</u> features and a <u>genomic Low Risk</u>

Chemo efficacy in Clin-High / MP Low (DMFS)

DMFS: distant relapses deaths all causes

- No statistical difference between CT vs no CT arms
- <u>Excellent survival</u> with no chemotherapy for patients with clinically high risk features (94.4%)

Secondary Endpoint met!

Personalized Healthcare - Precision Oncology

Early Breast Cancer High risk for recurrence – Unmet need

Standard Chemotherapy Only 20% Response New Targeted Drugs Need Companion Diagnostics use case: early stage breast cancer - high risk (stage 2 and 3) EU: 100K and US: 60K patients/year

I-SPY CONFIDENTIAL

Breast cancer molecular subtypes to predict response in a modern treatment landscape lessons from ~1000 patients across 10 arms of the I-SPY 2 TRIAL

the 'right bins'

Laura van 't Veer, PhD - University California San Francisco

University of California San Francisco

JCSF

Comprehensive Cancer Center I-SPY Scientists: Christina Yau, Denise Wolf, Michael Campbell, Chip Petricoin, Julia Wulfkuhle, Mark Magbanua, Lamorna Swigart, Gillian Hirst and Concept holder scientists I-SPY 2 Trial PI's: Laura Esserman, UCSF Don Berry, MDAnderson Trial Sponsor: Quantum Leap Healthcare Collaborative

Basic Principles of I-SPY Platform Clinical Trial

- Test new drugs where they matter most
 - Early stage (primary diagnosis) rather than metastatic disease
- Change the order of therapy: learn about response early in the course of care
 - Neoadjuvant setting (systemic therapy before surgery)
 - Primary Endpoint is pathology complete response to therapy (**pCR, evaluated at surgery**)
- Build an efficient engine to evaluate drugs, accelerate knowledge turns
 - Master Protocol, Adaptive Design
- Use imaging and biomarker guidance
 - Focus on the population of patients who are at high risk for EARLY recurrence
 - Insights about who responds to what agents
 - "Graduation" for efficacy = threshold predictive probability of success in next phase III trial
- Collaborative by Design:
 - FDA, IRBs, Pharma, Biotech, Academics, Community Cancer Centers, Advocates

The I-SPY 2 TRIAL Standing Platform for High Risk Early Stage Breast Cancer

Phase II, adoptively randomized neoadjuvant trial

- Phase II drugs added to standard chemo
- High-risk disease: MammaPrint high risk, plus all HER2+
- Shared control arm
 - Standard neoadjuvant chemotherapy
 - HER2+ also gets standard of care for targeted agents
- Simultaneous experimental arms
 - Up to five
- Primary endpoint: pathologic complete response (pCR)
 - Defined as no residual invasive cancer in the breast or lymph nodes
- Match therapies (adaptively) with most responsive subtypes
 - Defined by HR+/-, HER2+/-, MammaPrint High1/(ultra) High 2 (MP1/2) status
- Agents/combinations "graduate" for efficacy = reaching >85% predictive probability of success in a subsequent phase III trial in the most responsive patient subset (HR/HER2/MPh1-2)

I-SPY 2 Participating Sites

18 Sites Open and Enrolling, Opening 3 sites Q1 and 3 sites Q2 2020

I-SPY CONFIDENTIAL

:

Trial Patient Enrollment Overview

I-SPY 2 Framework: Biomarkers Guide Enrichment of Drug Arm with Responding <u>Subtype</u>

Adaptive Randomization

I-SPY | The right drug. The right patient. The right time. Now.

I-SPY 2 Adaptive Randomization

1) <u>Randomization</u> of a drug starts randomly across 8 subtypes

I-SPY CONFIDENTIAL

I-SPY 2 Adaptive Randomization

2) <u>Adaptive randomization</u> to 1 of 5 'investigational' arms based on <u>serial MRI response</u> and <u>surgical endpoint</u> seen <u>for each of 8 subtypes</u> (hormone receptor +/-, HER2 +/-, MammaPrint-high 1 or 2), plus 1 in 5 to control

I-SPY CONFIDENTIAL

MRI: Rapid Response in TN-BC to Veliparib, Paclitaxel, Carboplatin

MRI imaging volume change at every time point informs adaptive randomization

At Diagnosis

After 3 cycles/weeks of treatment

At treatment completion 6 months

Example of 3 week response - (full treatment is ~ 6 months! De-escalate?)

I-SPY 2 Adaptive Randomization and Graduation

3) Drug Graduation based on 10 signatures (single or combinations of 8 subtypes) and 85% success in Phase 3

I-SPY CONFIDENTIAL

Timeline of Investigational Drugs and Graduating Signatures Biomarkers Guide Enrichment of Drug Arm with Responding Subtype-Signature

I-SPY[™] | The right drug. The right patient. The right time.[™]

pCR at surgery relates to survival regardless of treatment 10 treatment arms, 950 patients, median 3.8 yr follow-up

Figure 3: Association between pCR and Survival Outcomes (A) Kaplan Meier curves of EFS by pCR; (B) Kaplan Meier curves of DRFS by pCR.

at surgery

-SPY The right drug. The right patient. The right time. Now. Yee et all, SABCS 2017; DeMichele et all, ENA 2018; manuscript in revision

I-SPY 2 is a biomarker rich trial

STANDARD

- Level 1 evidence
- FDA cleared or approved or IDE filed
- <u>Used in clinical</u> <u>decision</u>

HR, HER2, MammaPrint, MR volume

QUALIFYING

- Level 2 evidence
- Have existing evidence for response prediction
- Based on mechanism of action
- Evaluated in CLIA setting
 - Agilent 44K array (FDA IDE)
 - Phospho-protein array (CLIA)
 - DNA mutation panel (CLIA)
- <u>Hypothesis testing</u>
 - Pre-defined biomarkers
 - Pre-specified rigorous

EXPLORATORY

- Biomarker discovery
- <u>Hypothesis generation</u>

I-SPY | The right drug. The right patient. The right time. *Now*.

I-SPY 2 Framework – 'Standard Biomarkers' (level 1): Biomarkers Guide Enrichment of Drug Arm with Responding Subtype (example 1)

Example: Veliparib (PARP-inh)/Carboplatin (tested in HER2neg subtypes) Adaptive Biomarker Subtypes indicated:

- <u>response</u> in Triple-Negative (<u>TN</u>) Breast Cancer
- <u>no response</u> in Hormone receptor positive Breast cancer (<u>HR+/HER2-</u>)

and the adaptive randomization enriched the VC arm and graduated in TN Breast Cancer

I-SPY 2 Framework – 'Standard Biomarkers' (level 1): Biomarkers Guide Enrichment of Drug Arm with Responding Subtype (example 2) Example: Pembroluzimabx4 (anti-PD1) (tested in HER2neg subtypes) Adaptive randomization indicated:

response and graduated in three biomarker subtypes/signatures

I-SPY | The right drug. The right patient. The right time. *Now*.

Response Biomarkers to improve response prediction (Biomarkers level 2)

- Important to get every patient to pCR (increased probability of survival)
- I-SPY 2 randomizes by 8 subtypes (HR +/-, HER2+/-, MammaPrint High1/High 2; 2³=8)
- How can biology further identify responders?
- I-SPY 2 tests 'Qualifying Biomarkers', which have existing evidence for response prediction (Biomarkers level 2)
 - Biology of Targeted agent, eg DNA repair deficiency, HER2 signaling, immune signatures, biology subtyping (gene expression, phosphor protein, some DNA mutation)
- Presented here: Individual and Integrated Qualifying Biomarkers

I-SPY 2 is a biomarker rich trial

STANDARD

- Level 1 evidence
- FDA cleared or approved or IDE filed
- <u>Used in clinical</u> <u>decision</u>

HR, HER2, MammaPrint, MR volume

QUALIFYING

- Level 2 evidence
- Have existing evidence for response prediction
- Based on mechanism of action
- Evaluated in CLIA setting
 - Agilent 44K array (FDA IDE)
 - Phospho-protein array (CLIA)
 - DNA mutation panel (CLIA)
- <u>Hypothesis testing</u>

Pre-defined biomarkers

• Pre-specified rigorous

EXPLORATORY

- Biomarker discovery
- Hypothesis generation

I-SPY | The right drug. The right patient. The right time. *Now*.

Our Pre-specified Qualifying Biomarker Evaluation Methodology is a 3-Step Process

Qualifying Biomarker Process:

Denise Wolf, Christina Yau et al, Nature Partner Journals Breast Cancer, 2017

I-SPY | The right drug. The right patient. The right time. Now.

Evaluation by receptor subtype: TNBC

- BOTH veliparib/carboplatin (VC) combination therapy AND pembrolizumab (P) graduated in the triple negative (TN) subset
 - Plan to include pembro in Block B; carbo in Block B; more immunotherapy & DRD agents in Block A
- Who should get what and can we prioritize based on biomarkers to improve outcome?

Immune and DRD biomarkers in TNBC, viewed individually

Which drug should be prioritized for whom in TNBC?

Immune and DRD biomarkers associate with pCR in HR+HER2- as well, though prevalence differs

How do we integrate all this information?

(Our current status based om pre-treatment tumor biomarkers)

From Breast Cancer Receptor Subtypes to Drug Sensitivity Subtypes

~1000 I-SPY 2 patients Pre-treatment biopsy

Denise Wolf, Christina Yau ao

Qualifying Biomarkers-based subtypes

Integrated Qualifying Biomarkers ~1000 I-SPY 2 patients -> 5 Drug Sensitivity subtypes

Receptor subtypes

I-SPY | The right drug. The right patient. The right time. *Now*.

Denise Wolf, Christina Yau ao

From Breast Cancer Receptor Subtypes to Drug Response Subtypes

~1000 I-SPY 2 patients

Pre-treatment biopsy: standard receptor subtypes (left) to best qualifying biology (right), based on 24 per drug qualified biomarkers combined (work in progress)

Denise Wolf, Christina Yau ao

Increase of Response prediction:

- **1) Standard Chemotherapy**
 - No subtype selection 20-25%
- 2) I-SPY 2 Standard chemo with targeted agents on optimal receptor subtype <u>40%</u>
- 3) Predicted Response subtypes w preferred targeted agent estimated <u>~60-70%</u> (ongoing)
- 4) Next: Test in I-SPY 2.2

5 Response subtypes

I-SPY 2 is a biomarker rich trial

STANDARD

- Level 1 evidence
- FDA cleared or approved or IDE filed
- <u>Used in clinical</u> <u>decision</u>

HR, HER2, MammaPrint, MR volume

QUALIFYING

- Level 2 evidence
- Have existing evidence for response prediction
- Based on mechanism of action
- Evaluated in CLIA setting
 - Agilent 44K array (FDA IDE)
 - Phospho-protein array (CLIA)
 - DNA mutation panel (CLIA)
- <u>Hypothesis testing</u>
 - Pre-defined biomarkers
 - Pre-specified rigorous

EXPLORATORY

- Biomarker discovery
- <u>Hypothesis generation</u>

I-SPY | The right drug. The right patient. The right time. *Now*.

ctDNA and increased risk of metastatic recurrence Exploratory Biomarker – ctDNA in plasma - MK2206(AKT-inh)

Circulating Tumor DNA (exploratory biomarker): Personalized 16 tumor mutated specific fragments Serial liquid biopsies: MK2206 (Akt-inh) plus controls

pCR/no pCR and ctDNA status at surgical timepoint

Signatera platform – Natera Inc

Mark Magbanua et al, SABCS 2018/2019, submitted

I-SPY | The right drug. The right patient. The right time. *Now*.

Evolution to I-SPY 2.2

Permit de-escalation or escalation of therapy as needed

- Adapt treatment on the individual patient level to maximize pCR and further increase survival probability
- Make use of MRI volume change early
- Guidance by ctDNA (high need: validation, sequencing)*
- Immune blood marker changes (<u>high need</u>: sequencing)*
- Integrate all our qualifying biomarker knowledge to guide drugs
 - 24 predictive biomarkers across 10 drugs evaluated on 1000 I-SPY 2 patient
- Introduce 'window of opportunity' drug treatment in trial to find signal of response

I-SPY 2 Platform Trial: Learning, Innovating, and Evolving

The I-SPY 2 trial

 adaptive randomization of targeted drugs to responding subtypes optimizes complete response and survival for high risk breast cancer

Patient Centered

- the best drug for their subtype
- Maximize chance of pCR and cure for each patient
 - pCR results in 95% 3 yr disease-free survival (no-pCR 76-79%)
- Increase chance of pCR and cure for the high risk population
 - Learn, approve drugs and combinations that are effective and less toxic
- A design that patients like, that investigators like, where industry will participate speeds the chance that patients will survive
- Advances regulatory science

I-SPY 2 Data and Biospecimen Access Process

- Platform Data available for access proposals
- Biospecimen available for proposals

By Data Access and Publication Policy and Concept sheet submission

Acknowledgements

WORKING GROUP CHAIRS

Study Pls:	Laura Esserman,	Operations:	A. DeMichele/C. Isaacs
	Don Berry	Biomarkers:	Laura van 't Veer
Imaging:	Nola Hylton	Pathology:	Fraser Symmans
Agents:	Doug Yee	Advocates:	Jane Perlmutter
Safety:	Hope Rugo/R. Schwab	PRO/QOL:	Michelle Melisko

SITE PRINCIPAL INVESTIGATORS: 19 sites

Columbia:	Kevin Kalinsky	UCSF:	A. Jo Chien
Denver:	Anthony Elias	UMinn:	Doug Yee
Gtown:	Claudine Isaacs	UPenn:	Amy Clark
Loyola:	Kathy Albain	USC:	Julie Lang
Mayo:	Judy Boughey	Yale:	Tara Sanft
Moffitt:	Heather Han	Emory:	Jane Meisel
OHSU:	Kathleen Kemmer	Wake:	Alexandra Thomas
Swedish:	Erin Ellis	UPMC:	Adam Brufsky
UChi:	Rita Nanda	UAB:	Erica Stringer-Reaso
UCSD:	Anne Wallace		

SPONSOR

Quantum Leap Healthcare Collaborative

QLHC Board, James Palazzolo, Adam Asare, Kathryn Watson-Feiner, Tracey Heather, Smita Asare, Paul Henderson, Dan Dornbusch, Karyn DiGiorgio, Brendan Raven

PROJECT OVERSIGHT

Anna Barker/ASU, Gary Kelloff/NCI, Janet Woodcock/FDA, Richard Pazdur/FDA, Robert Becker/FDA, ShaAvhree Buckman/FDA,CDER, Steve Gutman, David Wholley/FNIH

DSMB & Independent Agent Selection Committee (IASC) members

PROGRAM MANAGEMENT

Executive Director: Smita Asare

Operations Manager: Ruby Singhrao

Program Administration:

Stig Kreps, Meera Bose, Lorena K., Julie Ma, Elizabeth L., Jill P., Janelle J., Aminat A., Laura G., Carlos Collaborators B., Andrea W.

Safety & Regulatory:

Danielle Zaragoza, Snigdha Bezawada, and Beverly Smolich (CCS Assoc.)

Manuscripts/Strategy:

Laura Sit, Jeff Matthews

Biomarkers/Specimens:

Michael Campbell, Chip Petricoin, Julie Wulfkuhle, Denise Wolf, Lamorna Brown-Swigart, Gillian Hirst, Sara Venters, Aye Aye Ma, Elizabeth Bergin, Mark Magbanua & Collaborators

Imaging Lab:

Wen Li, David Newitt, Jessica Gibbs, Melanie Regan, Margarita Watkins

Data Analysis, Data Management & IT:

Ashish Sanil (Berry Consultants), Christina Yau, Amrita Basu, Garry Peterson, Amy Wilson, Sruthi Samineni, Nick O'Grady

PRIOR COLLABORATORS and STAFF

Andres Forero-Torres, Larissa Korde, Rashmi Murthy, Donald Northfelt, Qamar Khan, Kirsten Edmiston, Rebecca Viscusi, Barbara Haley, Amelia Zelnak, Julie Sudduth-Klinger, Nancy Lisser, Meredith Buxton, Melissa Paolini, and Julia Lyanderes

Thank you to the remarkable **patients and families**, our amazing advocates,

all of the investigators, staff, and our DSMB for supporting the trial

© 2019 Quantum Leap Healthcare Collaborative™. Confidential and Proprietary. All rights reserved.

I-SPY | The right drug. The right patient. The right time. *Now*.

I-SPY 2 Participating Organizations and Funders

"Here are my genes..."