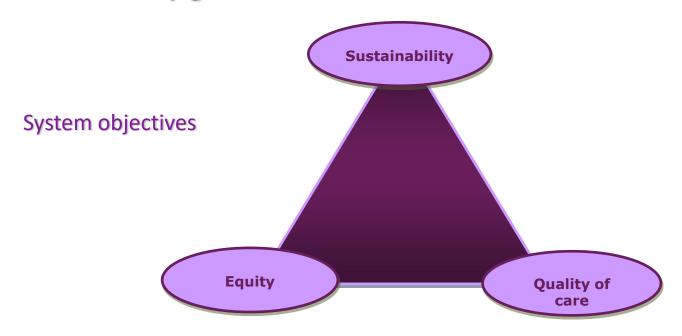
Erasmus School of Health Policy & Management


Affordability and sustainability of innovative medicines

Carin Uyl-de Groot

Inspire2Live Webinar September 7, 2020

Policy goals in health care

Goal:

Ensuring affordable and equitable access for (all) patients to effective therapies in a sustainable manner

Erafus,

The good news (1).....

Cancer survival in Europe 1999–2007 by country and age: results of EUROCARE-5—a population-based study

Roberta De Angelis, Milen a Sant, Michel P Coleman, Silvia Francisci, Paolo Baili, Daniela Pierannunzio, Annalisa Trama, Otto Visser, Hermann Brenner, Eva Ardanaz, Magdalen a Bielska-Lasota, Gerda Engholm, Alice Nennecke, Sabine Siesling, Franco Berrino, Riccardo Capocaccia, and the EUROCARE-5 Working Group*

Summary

Background Cancer survival is a key measure of the effectiveness of health-care systems. EUROCARE—the largest cooperative study of population-based cancer survival in Europe—has shown persistent differences between every largest cooperative study of population and the cooperative study of the cooperative study Wartana VSC data from for cancer survival, although in general, cancer survival is improving. Major changes in cancer and rehabilitation occurred in the early 2000s. EUROCARE-5 assessed countries.

Methods In this retrospective observational str val for 46 cancers weighted by age fic survival for ten common cancers, together with

enerally increased steadily over time for all European regions. The largest increases 07 were for prostate cancer (73 · 4% [95% CI 72 · 9–73 · 9] vs 81 · 7% [81 · 3–82 · 1]), non-Hodgkin ·8% [53·3–54·4] vs 60·4% [60·0–60·9]), and rectal cancer (52·1% [51·6–52·6] vs 57·6% [57·1–58·1]). Sarvival in eastern Europe was generally low and below the European mean, particularly for cancers with good or intermediate prognosis. Survival was highest for northern, central, and southern Europe. Survival in the UK and Ireland was intermediate for rectal cancer, breast cancer, prostate cancer, skin melanoma, and non-Hodgkin lymphoma, but low for kidney, stomach, ovarian, colon, and lung cancers. Survival for lung cancer in the UK and Ireland was much lower than for other regions for all periods, although results for lung cancer in some regions (central and eastern Europe) might be affected by overestimation. Survival usually decreased with age, although to different degrees depending on region and cancer type.

comment page 2

See Articles page 35

See Online for an author interview with Robertade Angelis

*Members of the EUROCARE-5 Working Group are listed in the appendix

Centro Nazionale di Epidemiologia, Sorveglianza e Promozione della Salute, Istituto Superiore di Sanità, Rome, Italy (R De Angelis MSc, S Francisci PhD.

D Pierannunzio PhD, R Capocaccia MSc); Analytical

Epidemiology and Health Impact Unit (M Sant MD, P Baili MSc), Evaluative

Epidemiology Unit

(A Trama MD, F Berrino MD), Department of Preventive and

The good news (2): Many innovative (cancer) drugs

INJECTION FOR INTRAVENOUS USE 10 mg/mL

The bad news (1): Rise in health expenditures 2000-2015 as share Gross Domestic Product (GDP)

Country	2000	2005	2010	2015
Austria	9.2	9.6	10.1	10.4
Czech Republic	5.7	6.4	6.9	7.5
Denmark	8.1	9.1	10.4	10.6
France	9.5	10.2	10.7	11.0
Germany	9.8	10.2	11.0	11.1
Ireland	5.9	7.7	10.6	9.4
Netherlands	7.1	9.4	10.4	10.8
Norway	7.7	8.3	8.9	9.9
Poland	5.3	5.8	6.4	6.3
Spain	6.8	7.7	9.0	9.0
United Kingdom	6.3	7.4	8.5	9.8
Average EU	7.3	8.2	8.9	9.0

The bad news (2):

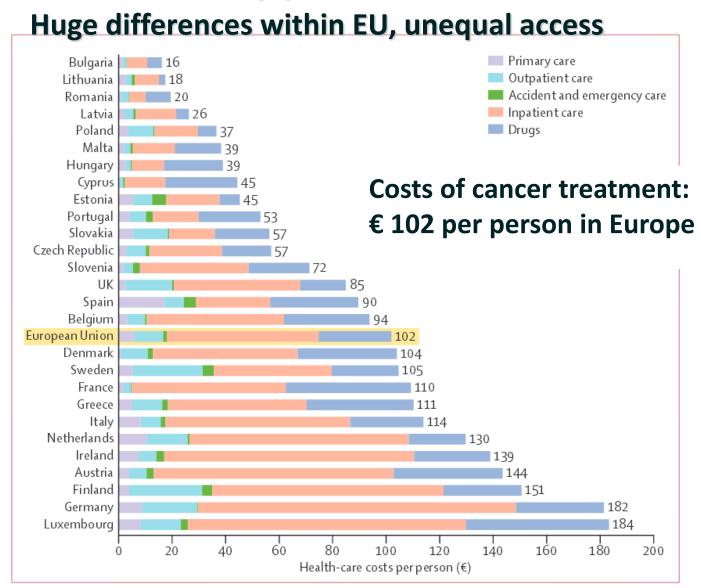


Figure 1: Health-care costs of cancer per person in European Union countries in 2009, by health-care service category

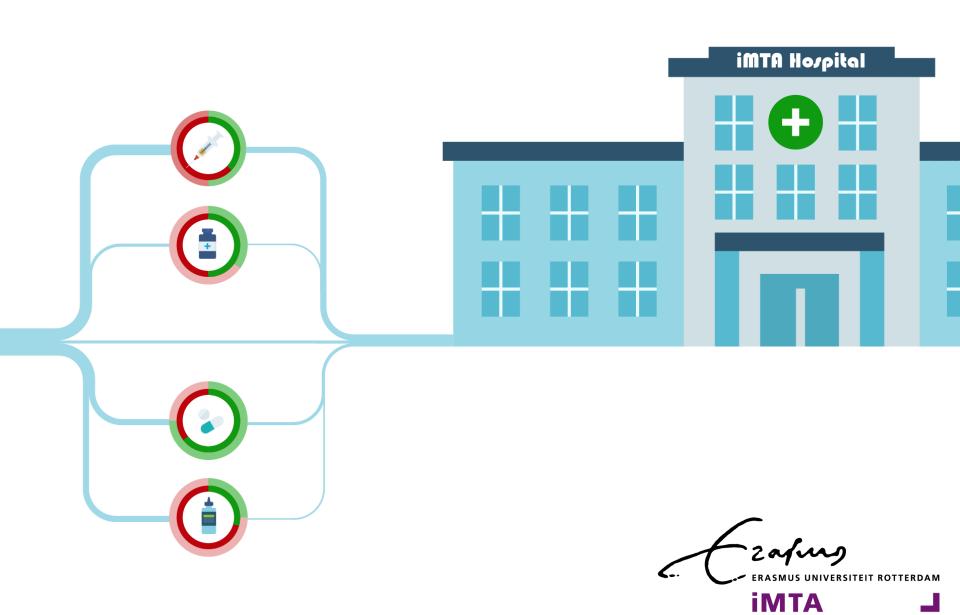
Data not adjusted for price differentials.

Result budget problems

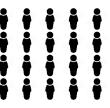
The Netherlands (2014): € 530 million spent on new cancer drugs

Maximum growth budget per year: 1.2%

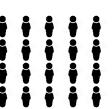

New cancer drugs 2016	Estimated costs per	ICER	Estimated budget impact	
Nivolum Oppo	ortunity	cost	200 mln	
Pertuzumab	€ 78.000	€ 150.000	€ 40 mln	
Ibrutinib	€ 70.000	Unknown	€ 100 mln	
Palbociclib	Unknown	Unknown	€100 mln	
CAR-T cells	€300-400.000	Unknown	Unknown	
			Zafung	

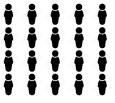

Affordable (expensive) therapies

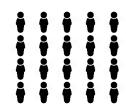
Thanks to Matthijs Versteegh

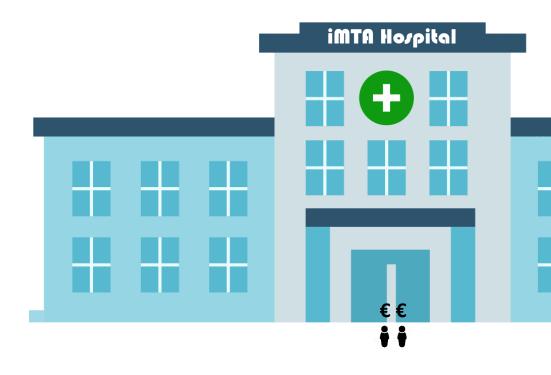


Erasmus University Rotterdam




€ € € € € € € € € € € € € € € € €

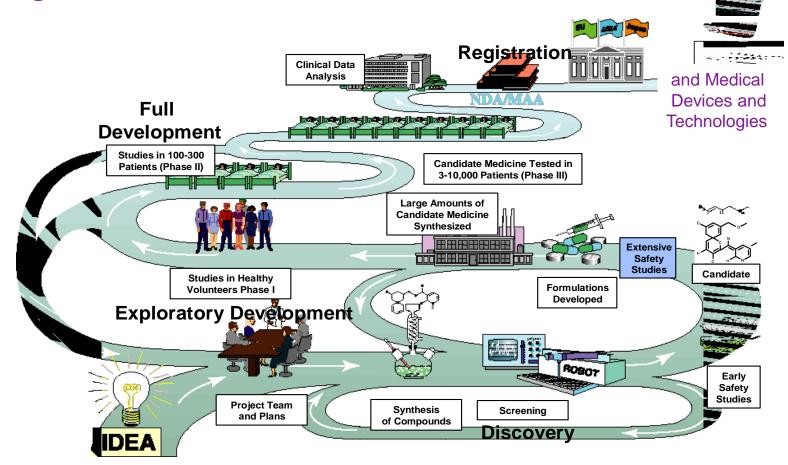

€€€€€€

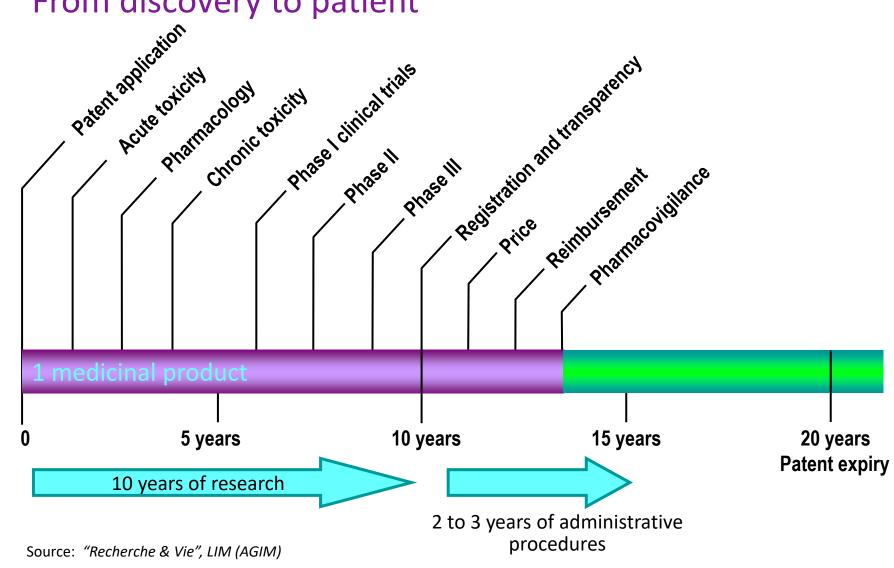


"The invisible patient"

Opportunity costs

What we give to patient A, we cannot give to patient B.


Given a **limited health care budget** (or a limited willing to pay a higher premium) it is **unethical** not to make a societal decision.

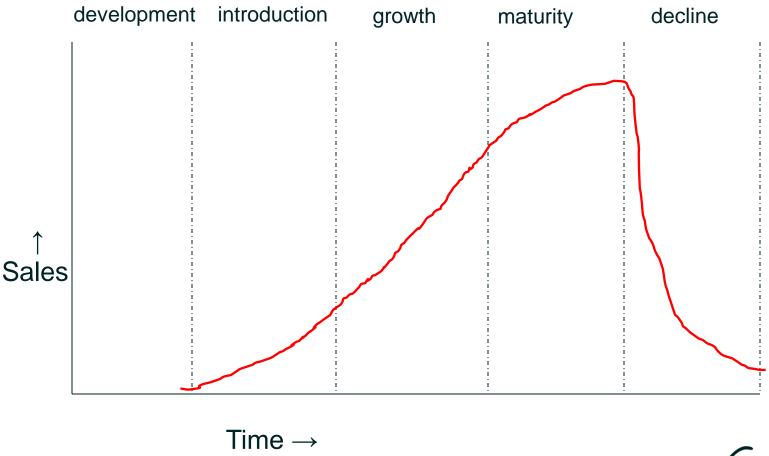

Why is it expensive?

Development phase: a long and winding road to

registration

Development phase From discovery to patient

Costs of development new drug


Cost factors:

- R&D (including failures)
- Manufacturing
- Marketing and promotion

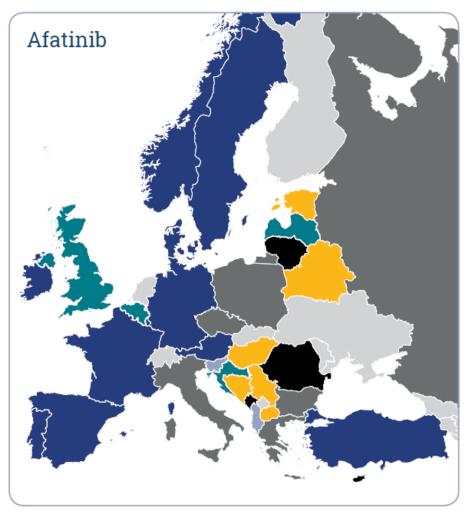
• Estimation: 300 million -2.6 billion dollars

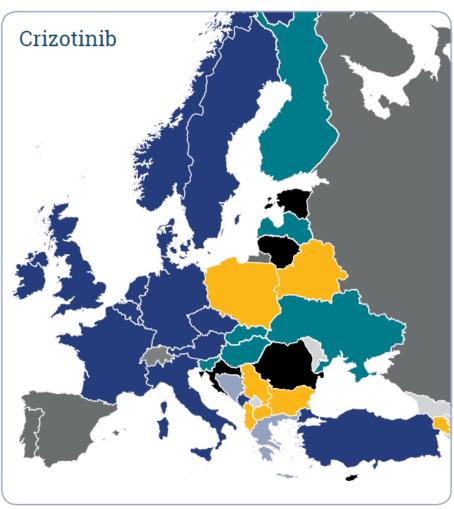
Life cycle of a technology

Worldwide total revenues of leading pharmaceutical companies in 2014 (in billion dollars)

Com	oany	Total revenue (\$)	R&D costs (\$)	Sales and Marketing costs (\$)	Other activitiesc osts* (\$)	Profit (\$)	Profit Margin (%)
1.	Johnson & Johnson	71.3	8.2	17.5	31.8	13.8	19
2.	Novartis	58.8	9.9	14.6	25.1	9.2	16
3.	J						
4.							
5. 6. 10%							
7.	GSK	41.4	5.3	9.9	17.7	8.5	21
8.	AstraZeneca	25.7	4.3	7.3	11.5	2.6	10
9.	Eli Lilly	23.1	5.5	5.7	7.2	4.7	20
10.	AbbVie	18.8	2.9	4.3	7.5	4.1	22
Total	Top 10 global companies	429.4	65.8	98.3	175.5	89.8	20.9
Percentage of total revenue – (19%) (29%) (52%) profit						/.W. VV	

^{*}Other activities' costs = Total revenue – R&D costs – Sales and marketing costs. Overhead costs are included in R&D, sales and marketing and other activities.


Poor image


- Profitability far above average other manufacturing industries (20 vs 10%)
- Innovation is flagging
- Little sensitivity to equity considerations: poorer countries and weaker citizens should have same access to drugs as richer countries and better-of citizens
- More is spent on marketing than on R&D
- Safety issues

Availability of 2 cancer drugs

Source: ECL report, October 2018

Always Usually Half of the time Occasionally Never Not Available No Data

Article

Unequal Access to Newly Registered Cancer Drugs Leads to Potential Loss of Life-Years in Europe

Carin A. Uyl-de Groot 1,*, Renaud Heine 10, Marieke Krol 2 and Jaap Verweij 3

- Erasmus School of Health Policy & Management, Erasmus University Rotterdam, Burg Oudlaan 50, 3062 PA Rotterdam, The Netherlands; heine@eshpm.eur.nl
- ² IQVIA, Herikerbergweg 314, 1101 CT Amsterdam, The Netherlands; Marieke.Krol@iqvia.com
- Department of Medical Oncology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; jaap@cddf.org
- * Correspondence: uyl@eshpm.eur.nl; Tel.: +31-10-408-8555

Received: 30 June 2020; Accepted: 7 August 2020; Published: 17 August 2020

Figure: Time to first uptake for 12 newly registered oncological drugs across Europe (in days)

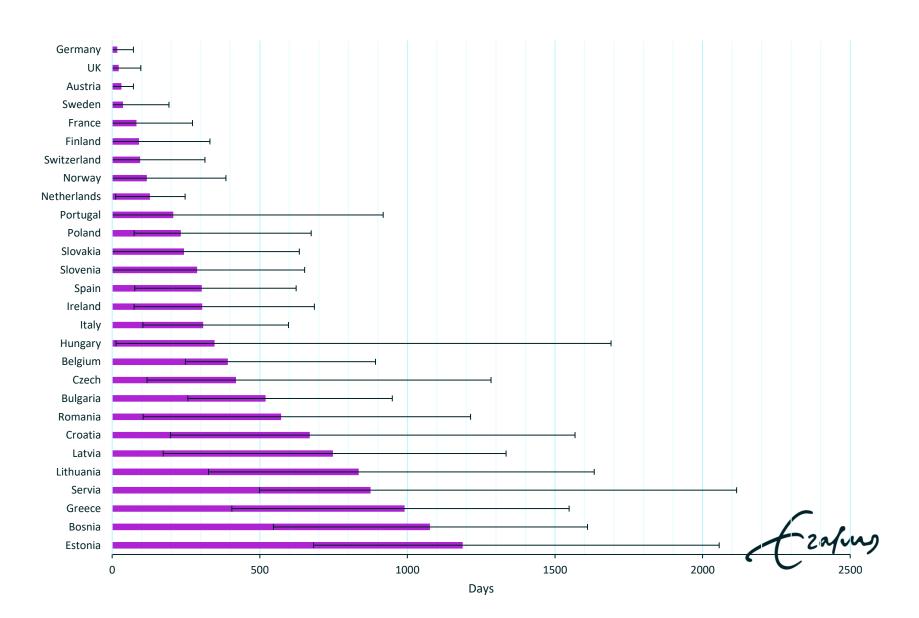
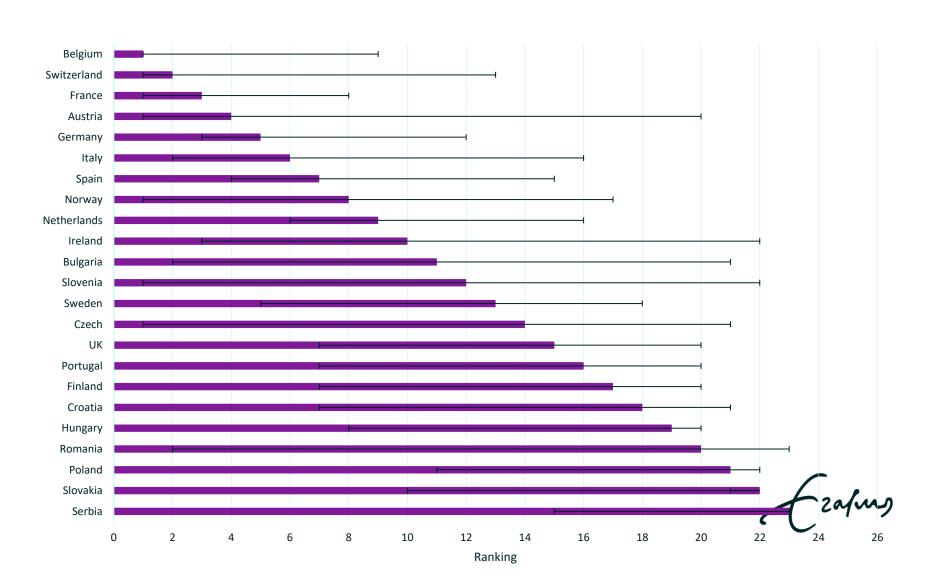



Figure: Speed of drug uptake for 12 newly registered oncological drugs in first two years across Europe

Systems are not sustainable so:

How to reduce spending?

- Shift from expensive to cheap technologies
- Make patients or the insurance pay a larger part
- Reduce the prices of drugs
- Reduce the total use of drugs
- Focus on reduction of prices
- However, we have to deal with the unequal access issue across Europe

Value based pricing

Incremental cost-effectiveness ratios: Cost per QALY gained Thresholds

- NICE: £ 30.000, US: US\$ 50-100.000
- WHO threshold: depend on WHO region and Gross Domestic Product (GDP)

Still budget impact problem.

Pay for performance (P4)

Reimbursement dependent on treatment success

Volume-price arrangements

sales < Y price P1; sales > Y lower price P2

Rationale for adapting the business model of (cancer) drug pricing

Issues:

- 1. A free market does not work for innovative (cancer) drugs
 - Informational imbalance
 - Failure of competition
- 2. Current cancer drug prices not justified by Research and Development (R&D)
- 3. Country specific solutions did not solve the problem
 - EUNeHTA
- 4. Restricted access to innovative drugs

New pricing model innovative (cancer) drugs:

https://www.youtube.com/watch?v=znTgYPRWyrA

News and Views | 7 May 2018

Sustainability and affordability of cancer drugs: a novel pricing model

Carin A. Uyl-de Groot & Bob Löwenberg

Nature Reviews Clinical Oncology 15, 405-406

The algorithm

Fair Cost of New Medicine =
$$\frac{\text{R\&D costs}}{\text{nr. of patients} \times \text{years of patient left}} + \frac{\text{production costs per patient per year}}{\text{patient per year}} \times (1+\text{profit margin})$$

Carin A. Uyl-de Groot and Bob Löwenberg, Sustainability and affordability of cancer drugs: a novel pricing model. Nature Reviews, July 2018. [link]

Some assumptions examples in algorithm

Costs R&D

- Enzalutamide: US\$473.3 million
- Ruxolitinib: US\$1,097.8 million
- Maximum reported: US\$2.588 billion, including abandoned drugs

Number remaining patent years

- Average all drugs: appr. 10 years
- Enzalutamide: 13 years
- Ruxolitinib: 12.2 years

Profit margin depend on clinical benefit (MCBS score)

Table 1 Calculation of cost price of average treatment of one patient with a new drug

	Estimation number of patients	Costs R&D* (US\$)	Costs Drug (US\$)	Costs without profit (US\$)	Profit margin 20% (US\$)	Profit margin 30% (US\$)	Profit margin 40% (US\$)
Base case 1	100,000	2,558	650	3,208	3,850	4,170	4,491
Base case 2	10,000	25,580	650	26,230	31,476	34,099	36,722
Enzalutamide	140,000	260	1,950	2,210	2,652	2,873	3,094
Enzalutamide	300,000	121	1,950	2,071	2,486	2,693	2,900
Ruxolitinib	7,600	11,840	1,430	13,270	15,924	17,251	18,578
Ruxolitinib	76,000	1,184	1,430	2,614	3,137	3,398	3,660

Outline adapted business model of (cancer) drug pricing

Central level (US, EU, other)

Calculation of maximum price of new cancer drug

Calculation maximum price of new cancer drug based on algorithm

Algorithm includes:

- Research & development (R&D) cost including abandoned drugs
- · New drug (manufacturing, sales, marketing, overheads) costs
- Profit margin linked to clinical benefit
- Number of patent years after registration
- Number of patients worldwide

Establishment of proposed price for new cancer drug by e.g. an EU or USA agency (subject to adjustment to national circumstances)

Ongoing debate and progress

Meetings with the European Parliament

- Resolution: transparency R&D costs, discounts (2017)
- White paper access to medicines (October 2018)

Dutch Ministry of Health: BeNeLuxAl

ESMO: access to medicine hot topic

EHA: task force fair prices

Patient organizations: e.g. Inspire2Live

Pharmaceutical companies (improving access/uptake)

Collaboration with other organizations:

Fair Medicine

Joint pricing between countries

- Netherlands
- BeNeLuxAl
- And next.....

	Number of inhabitants (in millions)	Perc. Europe (cumulative)	
NL	17	2%	4%
BeNELux	29	4%	7%
BeNELuxA	38	5%	9%
BeNeLuxAl	42	6%	10%
UK	66	15%	16%
Italy and Spain	107	29%	25%
Western Europe	421	57%	100%

Example: niraparib (Zejula)

For the maintenance treatment of ovarian, fallopian tube, or primary peritoneal cancer.

$$Fair Cost = \left[\frac{R\&D costs}{nr. of patients \times yrs of patient} + production \right] \times (1 + profit margin)$$

Input:

- R&D costs of Tesaro from 2010 to 2017 = €1,882,000,000
- Estimated number of patients = 50,000 [Source: Globocan 2012. Assumption: 30% eligible patients worldwide]
- Years of patent left = 11.5 years
- Production cost (per patient, per year) = [€5 (per caps) x 3 (caps. per day) x 365] = € 5,475
- Profit margin factor = 40%

Fair price vs. actual price

Fair price of niraparib (Zejula) per patient per year = €14,547

Price of niraparib (Zejula) per patient per year in The Netherlands = € 126469

Calculated revenue with fair price per year

With fair price based on all eligible = 50,000 patients x €14,547 = € 727,338,043
 (\$ 833,859,609)

Fair price vs. actual price

Fair price of niraparib (Zejula) per patient per year = €14,547

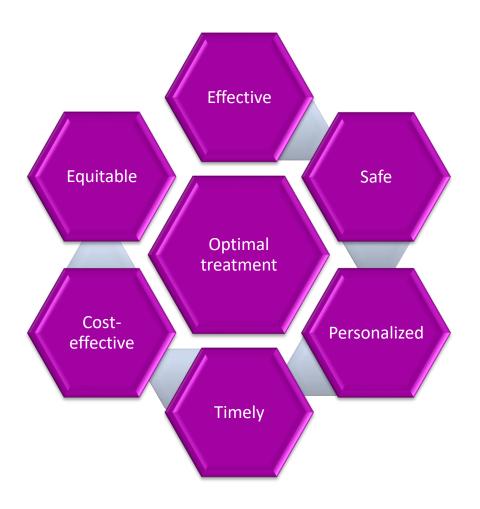
Price of niraparib (Zejula) per patient per year in The Netherlands = € 126,469

Actual revenue vs. calculated revenue with fair price

- Net sales 2017 (extrapolated) = \$145,333,333
- With fair price based on all eligible = 50,000 patients x €14,547 = € 727,338,043 =
 \$833,859,609

Measures needed at different levels (national, European), but barriers and limitations

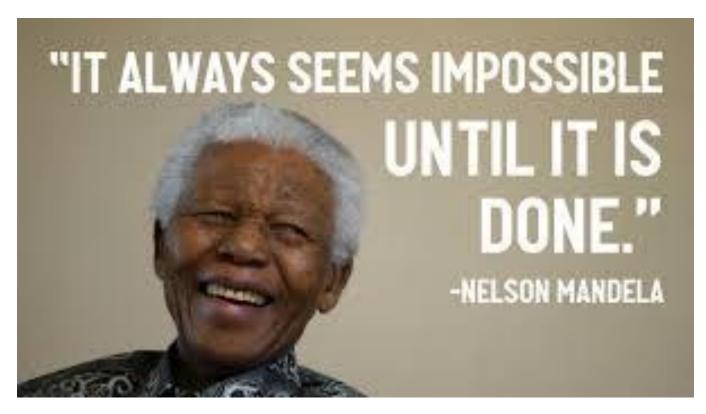
Access issue is broader than discussion about drug prices


Change health systems/legislation: will take years

Patient's right to health – right to have access to optimal quality of cancer care

Collaboration between all stakeholders, including pharmaceutical companies

Encourage joint negotiations


Health systems:

Take home message

- Faster access to new (cancer) therapies
- Better access to new (cancer) therapies
- Lower prices for new (cancer) therapies

It is not a utopia.

THANK YOU

