MULTI CANCER EARLY DETECTION (MCED) NECESSITY AND THE IMPACT HOW TO GET THERE?

Prof. Harry J de Koning, MD Phi Deputy Head & prof Public Healt Erasmus MC, Rotterdam, the Netherland

......

11111111

Erasmus MC Universitatismedisch Centrum Rotterdam

B S S N S

WHAT IS THE PROBLEM

1) Screening can reduce incidence and/or mortality:

- o Breast cancer
- o Cervical cancer
- o Colorectal cancer
- o Lung cancer
- o Prostate cancer
- 0 ..
- 2) But for **78% of the cancers**, there is **no** screening test available
- 3) Cancer screening challenges for cancers that are more rare or difficult to detect in their early stages:
 - o such as pancreatic, ovarian, and liver cancers

- 1) MCEDs could transform cancer screening by detecting multiple cancers early in a single test
- 2) Simultaneously by analyzing biomarkers shed by cancer cells into the bloodstream, e.g.,:
 - Protein
 - o DNA

0

Society

American

2024

O

Copyright

🏫 ascopubs.org						
			Average			
Comparison	Group	Cohort Number	Test Number	Sensitivity	Specificity	AUC
Single vs. Combined Factor	Single Combined	32 48	1792 970	81.68% 84.58%	80.79% 84.26%	0.81 0.84
MCED vs. SCED	MCED SCED	14 66	2187 1110	69.2% 86.4%	96.6% 80.0%	0.83 0.83
Inter-cancers (SCED)	colorectal cancer liver cancer lung cancer bladder cancer prostate cancer cervical cancer oral cancer breast cancer	22 11 8 6 4 3 2	1875 1343 299 209 562 864 254 520	84.5% 83.2% 89.8% 83.6% 92.1% 92.2% 78.5% 96.5%	83.9% 86.9% 58.2% 88.3% 68.1% 86.9% 85.3% 71.9%	0.84 0.85 0.74 0.86 0.8 0.89 0.82 0.82 0.84
	glial malignancies pancreatic cancer stomach cancer	1 1 1	68 139 4566	100.0% 83.8% 87.0%	100.0% 89.2% 68.4%	1 0.87 0.78

EARLY DIAGNOSIS?

- 1) Sensitivity for stage I (around 40%)
- 2) Sensitivity for stage III (around 80%)

MANY QUESTIONS

- 1) Do these tests reduce cancer-related deaths?
- 2) Do these tests reduce the incidence of advanced disease?
- 3) How earlier is cancer being found in the 'difficult cancers'?
- 4) Who should consider undergoing a MCED test?
- 5) What if follow-up testing doesn't detect cancer, what does that mean for their future cancer risk?
- 1) Would people who receive a MCED test skip traditional, proven cancer screenings?
- 2) Do these tests work equally well for everyone?
- 3) Could it worsen racial, ethnic, or socioeconomic disparities in cancer outcomes?

66

Screening increases cancer rates dramatically. About that we're certain. What is uncertain is whether it decreases cancer mortality. One needs appropriate clinical trials to address mortality.

99

5

– Donald Berry

Microsoft 365 (Office) openen

ONGOING PROSPECTIVE TRIALS

- 1) PathFinder study US amongst 6,621 participants >50 cancers (solid and non-solid)
- 2) DETECT-A study in the US amongst 3,870 8 cancers (ovary, liver, stomach, pancreas, esophagus, colorectum, lung and breast)
- 3) ASCEND-2 study amongst 6,354 56% sensitivity

- 4) NHS-GRAILS Galleri trial UK 140,000
- 5) Medicare-GRAILS Galleri (REACH) US 40,000
- 6) 20/20 GeneSystem'sOneTest
- 7) Precision Epigenomics's EPISEEK

SAN FRANCISCO FIRE FIGHTERS

- 1,786 active and retired firefighters
- Dec 6th 2022; 1 million dollars fund
- 5 detected cancers (expected 29)
- 6 false positives
- 2 cases already known
- 2 advanced cases (lung with now brainmetastases; pancreatic now in hospice)
- 6 missed cancers (melanoma, prostate, lymphoma)

THE EMPEROR OF ALL MALADIES

Randomised controlled trials are bothersome.

It takes ages to come to an answer, and they need to be large-scale.

But there is no alternative.

HJ de Koning Annals of Oncology 2003 Quoted in The Emperor of all Maladies by Siddharta Mukherjee

10

HOW TO GET THERE?

Biomarker studies specific cancer sites

- Biobanking studies
- Cancer specific grants
- More lobby

Almost impossible in NL (Health Council)

- European prospective study needed, but when is timely?
- Side study in running cohorts
- Focus on personalised care
- Pre-modelling natural histories

TEST CHARACTERISTICS – IDEAL TEST

- 1) Sensitive and specific
- 2) Inexpensive
- 3) Easy to administer
- 4) Earlier diagnosis
- 5) Limited harms (e.g., false positives)

PATHFINDER-PERFORMANCE

	Age ≥50 years with additional cancer risk (n=3681)	Age ≥50 years without additional cancer risk (n=2940)	Total (n=6621)
Resolution			
All	56 (1.5%)	36 (1.2%)	92 (1.4%)
True positive	24 (0.7%)	11 (0.4%)	35 (0·5%)
False positive	32 (0.9%)	25 (0.9%)	57 (0.9%)
Positive predictive value	24/56; 43% (30.8-55.9)	11/36; 31% (18.0-46.9)	35/92; 38% (28.8-48.3)
Negative predictive value	3449/3502; 98.5% (98.0-98.8)	2786/2819; 98.8% (98.4-99.2)	6235/6321; 98.6% (98.3-98.9)
Specificity	3449/3480; 99.1% (98.7-99.4)	2786/2810; 99.1% (98.7-99.4)	6235/6290; 99·1% (98·9-99·3)
Yield rate	24/3681; 0.65% (0.41-0.92)	11/2940; 0.37% (0.17-0.61)	35/6621; 0.53% (0.36-0.71)
Number needed to screen	3681/24; 153 (108-245)	2940/11; 267 (163-588)	6621/35; 189 (141-276)
Predicted origin accuracy*			
First CSO correct	20/23; 87% (67·9-95·5)	9/11; 82% (52·3-94·9)	29/34; 85% (69-9-93-6)
First or second CSO correct	23/23; 100% (85·7–100)	10/11; 91% (62·3–99·5)	33/34; 97% (85·1-99·8)

Data are n (%), n/N, or % (95% CI). CSO=cancer signal origin. *Excludes one participant with indeterminate CSO from the true-positive set.

Table 2: Multicancer early detection test performance

FALSE-POSITIVES

1) Between 62-75% has a false-positive result

2) Tissue of origin identified in 75% and 93% of cancer cases (retrospective study!)

Erasmus MC