

DEVELOPMENT OF NOVEL AGENTS FOR THE TREATMENT OF AGGRESSIVE CANCERS:

Targeting tumor-promoting Rho GTPases as a therapeutic strategy.

Annual Congress Inspire2Live 30th November 2023

Inspire

Georgina Cardama MSc, PhD

Argentina and Cancer

1 mg	-	A CONTRACTOR	TIC OCEAN	-B-
	RTH NORTH ATLANTIC	EUROPE S'	ASIA	NORTH
	SOUTH	AFRICA		
х холдон сананаланананананананананананананананана	SOUT ATLAN	н		CEANIA
PACIFIC OCEAN	AREFORM]
	2 2200	ANTARCTICA	5	

Numbers at a glance

Total population

Number of new cases

130878

Number of deaths

70074

Number of prevalent cases (5-year)

358627

Source: Globocan, 2020

Summary statistic	2020		
	Males	Females	Both sexes
Population	22 049 146	23 146 631	45 195 777
Number of new cancer cases	62 327	68 551	130 878
Age-standardized incidence rate (World)	230.7	213.3	218.2
Risk of developing cancer before the age of 75 years (%)	23.9	21.4	22.4
Number of cancer deaths	35 742	34 332	70 074
Age-standardized mortality rate (World)	126.1	92.9	106.1
Risk of dying from cancer before the age of 75 years (%)	13.1	9.8	11.3
5-year prevalent cases	159 188	199 439	358 627
Fop 5 most frequent cancers excluding non-melanoma skin cancer	Prostate	Breast	Breast
(ranked by cases)	Colorectum	Colorectum	Colorectum
	Lung	Cervix uteri	Lung
	Kidney	Lung	Prostate
	Bladder	Thyroid	Kidney

medium to high incidence of cancer

Center of Molecular and Translational Oncology (COMTRa)

Department of Science and Technology Quilmes National University Bernal, Buenos Aires, Argentina.

Minimal Residual Disease and cancer

Neuroendocrine Tumors - Repurposing

Aberrant Glycosylation in cancer – Novel Target validation

Phytotherapy – Natural extracts

Telomerase as therapeutic target in cancer – Repurposing and Drug discovery

Rho GTPases as therapeutic targets in cancer – Drug Discovery

Vasopressin related genes as therapeutic targets in cancer - Repurposing

NeuGC as therapeutic target in cancer – Vaccine development

Disclosure

Served as consultant for Chemo-romikin S.A (2018-2021) and Mabxience S.A.U (2021- 2023).

Beta-blockers as therapeutic agents in oncopediatrics – Repurposing

Rho GTPases

• Rac1, Cdc42 and Rho: most studied

members

- Signaling pathways involved in:
 - Apoptosis
 - Cell Growth
 - Cell migration and invasion
 - Angiogenesis

Rac1 in cancer

- Overexpression and/or overactivation in various types of cancer
- Involved in cancer progression
- **Prognostic factor** in various cancer types.
- Involved in treatment resistance

Rac1 and therapy resistance

Rac1 as a drug target

Target Validation

- Key molecule in cancer progression and metastasis:

Breast cancer, glioblastoma, colon cancer.

\square	
\bigcirc	

Drug Development

Repurposing:

- Azathioprine

- R-ketorolac / R-naproxen

De novo Drug Discovery - 1A-116

Preclinical development

In vitro and in vivo settings with translational relevance

De novo drug discovery

(US20140228388) (EP 2766342 B1) (201280049797.3) (China) (2014118574)(Rus)

Public-private partnership

mAbxience From lab to life

1A-116 physicochemical properties

Property	Value
MW (g.mol ⁻¹)	307.32
logP	4.67
Rotatable bonds	3
Rings	2
H-bond donors	2
H-bond acceptors	3
Polar surface area (Å ²)	50.41

- GMP compound
- Scalable synthesis route
- Possible oral formulation

Cardama *et al,* Anticancer Agents Med Chem., 2014 Gonzalez et al, *Front Cell Dev Biol.*, 2020

1A-116 toxicology

1A-116 PK

Acute Toxicity

Administration route	MTD (Maximum Tolerable Dose)	Preliminary LD
Oral	200-400 mg/kg	>800 mg/kg
I.V	4-8 mg/kg	Not defined
I.P	40-80 mg/kg	98 mg/kg

Sub-acute Toxicity

Route	Schedule	Doses	Observations
Oral	Daily for 28 days	2.5 mg/kg	- Normal increase of body weight
		10 mg/kg	condition
		50 mg/kg	 No significant changes in hematological determinations
I.V	3 times/weeks for 4	0.1 mg/kg	- Normal organ weight
	weeks	0.2 mg/kg	- Increased blood sugar
		1 mg/kg	- Accumulation of glycogen in the liver

In silico predictions

- 1A-116 is predicted to:
 - Penetrate the Blood–Brain Barrier
 - Exert high gastrointestinal absorption
 - Not to be a <u>P-gp substrate</u>

P-gp in cancer cells is a major cause of resistance to chemotherapy

Cardama et al, Cancers (Basel), 2022

Rac1 and 1A-116 in different cancer types

Breast Cancer

Combination with **endocrine therapies** Gonzalez et al, Cell Signal. 2017

Combination with **anti HER-2** therapies (Dr. Fiszman, Instituto Roffo)

Glioblastoma

Combination with chemotherapy (TMZ)

Combination with anti-EGFR agents

Chronopharmacology 1A-116 Trebucq et al, Pharmaceutics. 2021

Leukemia

1A-116 in AML Cabrera et al, Oncotarget., 2017

Kaposi Sarcoma

Colorectal cancer

HPV-positive cervical cancer

Rac1 in KS malignant transformation.

Combination with chemotherapy: 5-FU, OXA

 $\begin{array}{c} \mbox{Combination with immunotherapy (ICIs) in} \\ \mbox{pMMR cancer} \end{array}$

1A-116 as potential therapeutic agent in HPVpositive cervical cancer

Rac1 expression in glioblastoma (GBM) patients

RNA-Seq expression data of Rac1 (Illumina HiSeq 2000 RNA sequencing platform) from 420 low-grade gliomas (LGG, IDH1 mutated (mIDH1) samples and 154 GBM samples were obtained from The Cancer Genome Atlas (TCGA) and analyzed using the UCSC Xena browser

Cardama et al, Cancers (Basel), 2022

Preclinical evaluation of 1A-116 in GBM

genotyping using MLPA.

Ger	ie name	Status
IDH1	variant R132H	N/D
	variant R132C	N/D
IDH2	variant R172K	N/D
	variant R172M	N/D
PDGFRA		Normal
EGFR	wt	Amp (r=1.5)
	vIII	N/D
CDKN2A		Del
PTEN		Normal
CDK4		Amp (r=1.47)
MIR26A2		Amp (r=1.38)
MDM2		Normal
NFKBIA		Normal
TP53		normal

Median Sur (Days)	vival	% increase vs. control
Control	49	0%
5 mg/kg/day	49	
Control	50	10%
10 mg/kg/day	55	
Control	49	55%
20 mg/kg/day	76]

In vivo

Chronopharmacology of 1A-116 in GBM

Effectiveness of 1A-116 could be further improved by finding the **best time** for delivery

Collab with Chronobiology Lab - UNQ

Trebucq et al, Pharmaceutics, 2021

1A-116 and chemoresistance in GBM

1A-116 and TMZ combination

1A-116 inhibits GS-like Cells

Neurospheres

• **1A-116 as a biomodulator for TMZ activity** Potentiate efficacy, lower therapeutic doses, affecting resistant cells

• Looking for the maximum therapeutic index (the largest ratio between desired and side effects)

1A-116 restores tamoxifen sensitivity in human resistant breast cancer cells

License: 1A-116 commercially available for non clinical investigation

		rget	٩	9 0 Items My Account sign in / register
	Products Support Resources Services Literal	ture About Tooris Contact	Us	
	1A-116 Cat. No. 6701 Submit a Review	To on all ministration points	/ COA / SDS	Distributor Information Your territory is served exclusively by our
	Pricing Avai 10 mg \otimes h 50 mg \otimes h	ilability In Stock Please inquire In Stock Please inquire		distribution retwork. Please use the "Add to Cart" functionality to send pricing and availability inquiries directly to the distributor. Alternatively, please contact the distributor directly for pricing, shipping information and technical support.
				Show All Distributors ⊘
en Acco	ess Article		loro V	ulporable to Pac1
en Acc P <i>M1</i> hibit And Håkor	ess Article -Mutated Patient-Derived An tion ette Lodvir Hemsing ^{1,2} , & Kristin Paul n Reikvam ^{1,2,*} 🖂 🕼	ML Cells Are M	lore V	ulnerable to Rac1
en Acc PM1 hibit & And Håkor Depar	ess Atticle -Mutated Patient-Derivec At tion ette Lodvir Hemsing ^{1,2} , & Kristin Paul n Reikvam ^{1,2,*} © tment of Medicine, Haukeland University Hor	ML Cells Are M Isen Rye ² , & Kimber spital, 5021 Bergen, No	lore V ley Joan	ulnerable to Rac1 ne Hatfield ^{2,3} ⁽ and
en Acc PM1 hibit & And Håkor Depar	ess Article -Mutated Patient-Derivec An tion ette Lodvir Hemsing 1,2 ^(a) , & Kristin Paul n Reikvam 1,2,* ^(a) ^(b) tment of Medicine, Haukeland University Hos lar Drugs and Therapy brg/10.1007/s10557-023-07442-3	ML Cells Are M Isen Rye ² , & Kimber spital, 5021 Bergen, No	lore V ley Joan orway	ulnerable to Rac1 ne Hatfield ^{2,3} ⁽¹⁾ and

Oncogene www.nature.com/onc () Check for updates ARTICLE OPEN Fermitin family member 2 promotes melanoma progression by enhancing the binding of p- α -Pix to Rac1 to activate the MAPK pathway Shaobin Huang^{1,2,3,5}, Wuguo Deng^{2,5}, Peng Wang^{1,5}, Yue Yan², Chuanbo Xie², Xiaoling Cao¹, Miao Chen², Changlin Zhang², Dingbo Shi², Yunxian Dong¹, Pu Cheng¹, Hailin Xu¹, Wenkai Zhu⁴, Zhicheng Hu³, Bing Tang¹ © The Author(s) 2021

Accepted: 15 February 2023 © The Author(s) 2023

Conclusions

- Rac1 is an interesting drug target
- 1A-116 is a promising therapeutic agent in combinational therapeutic schemes
- Finding the best time for delivery can contribute to improve effectiveness

Take home messages...

- Drug discovery is feasible in LMIC
- Public-private partnerships to leverage R&D may be a good idea
- From the beginning: which group of patients would benefit from this type of therapy?
- Clinically relevant models are key component

Thank you!

Center of Molecular and Translational Oncology (COMTRa)

Contact georgina.cardama@unq.edu.ar gcardama@gmail.com

Web www.lomunq.com www.psbunq.com

